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SUMMARY
A singular perturbarion problem involving parabolic boundary layers is investigated. The second approximation
for the boundary layer is constructed and it is shown that this approximation cannot be obtained by the usual
perturbation method.

1. Intvoduction

In this report we shall study the problem of approximating the function
U(x, y; €) satisfying the differential equation:

2 2
6{6U+_8_U_Ey.=0’x20,y20,0<€«1. (1.18.)

And the boundary conditions:

Ux, 0) = 0 (1.1b)
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U(o, ) (1.1c)

This problem belongs to the class of singular perturbation problems,
In chapter 2 we summarize the results of Eckhaus and De Jager [2], who
applied the singular perturbation method to the above problem. In chapter
3 we approach the problem from another point of view, and solve (1.1) by
means of Green's theorem, which yields the exact solution. In chapter 4
we construct a uniformly valid expansion of this solution with respect to
the parameter €. Two reasons justify our way of treating the problem.
Firstly, the properties of the solution in a neighbourhood of the origin are
investigated; this is necessary as is shown in 2,1. Secondly, in chapter
5 we approximate the solution of the same equation in a bounded region
by means of the results obtained in the chapters 3 and 4.

2. Solution by Singular Pevturbation Method
2.1 The Parabolic Boundary-Layer.

In this chapter we summarize some of the results of [2}. In accordance
with the singular perturbation theory we introduce a local coordinate

E = ~v§= (2.1)

From (1.1) we obtain as an approximation the parabolic boundary-layer-
solution: '
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U, €, y) \E L e’ ¢< 2t2>dt. (2.2)

Let Ux, y; € = U, (V_’é— y) + Z(x, y; €), which yields for Z:

2 2 ER
a“Z 9°Z |- 8Z 0

Le(Z) = ¢ > t—— p-gT = € . (2. 3a)
ox 8y2 Y ay*®

Z(x, 0) = Z(0, y) = 0. (2. 3bc)

We wish to apply a theorem (proved in [2,]), which states: if Lg(Z) = 0(€%)
and on the boundary Z = 0(€®), then Z = O(emim< By for x > 0, y > O,

However, ‘application of this theorem is impossible, because of the un-
boundedness of (2.3a)in € = y = 0, which can be demonstrated by substi-
tuting (2.2) in (2. 3a):

5 £ -.E_E ] L2 EZ '
Le(Z) = ‘€V: — . e¥ . $Y0)+ N ”< -—=_\dts (2.4
W{(2y)3” o 5 Y 2t 24

Vay
2.2 The Regularized Parabolic Boundary-Layer.

In (2.4), only the first term possesses a singular behaviour in the origin;
a boundary condition a(y) with ¢'(0) = 0, would therefore remove the first
term and, thus, the singularity. We define ¢(y) = d(y) - Z(0, y; €), where

Z(0, y; €) = y¢'(0) exp<1a> = 0(e ¥, with @ > 0 arbitrary, (2. 5a)
€

Z(x, 0; €) = 0. (2. 5Db)

We then obtain I_JO (8, y) (the regularized parabolic boundary-layer). Setting
up the problem for Z, we conclude that it is now possible to apply the
theorem mentioned in 2.1, because

L.(Z) = 0(e) + 0(e'™™), hence Z(x, y; €) = 0(eminth e« =)y (2, 5¢)

Optimal choice of « makes the remainder term O(\F), Finally it can be
proved that Uy = U, + 0(\€). ‘
In chapter 4 we shall show that:
a. the accuracy O(\/E) is not the best estimation of the remainder term.
b. it is impossible to calculate higher-order approximations by the singular
perturbation method.

3. Solution by Means of Gveen's Theoren.

‘We introduce the transformation:
. v

Uk, y; €) = ulx, y; €).e™ (3.1)
and obtain the differential equation of Helmholtz:

2 2 .

6w B U g for x>0, y2 0, (3. 22)
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with boundary conditions: .
, y .

u(x, 0) = 0, u(0, y) = é(yl.e *. (3. 2b)

For the problem (3.2) we determine the Green's function v(&, n; x, y) in
the £, wu-plane with (%, y) fixed. We obtain:

r Ir I I
v, n) = K <21€) - KO(_Z%)»_ Ko(%) + K (2—4;) s (3.3)

where r, r, and r, are distances between (¢, n) and (%, y), (-X, y),
(x, -vy) and (2 X, -y respectively. Using transformation (3.1) we get from
(3.2) and (3. 3) w1th Green's theorem:

U(x, y; €) = — 5¢ t)exp (l—> 8x{ (\/—2+(t y>2) K, (—T—W)}dt.(&él)

2€

4. Asymptotic Expansion of the Solution
4.1 Introductory Remarks

In this chapter we shall expand (3.4) in € by defining the local coordi-
nates:

o’
€ €

EJZ—X‘TI"'L:Q’ZO: BZO:

in which we express the solution. We define three sets of local coordinates
in the following domains:
Domain I : 0 ¢ x < Me, 0 < y < Me, M is an arbitrary large number
independent of €, see 4. 2.

Domain II : 0 < x% < Mye, M > y > Me, see 4.3.
Domain IIT : M > y > 0, x2 > Mye, x >eM, see 4.4.

We remark that the techmque of defining a set of local coordinates has
been used in [3]

|
|
|
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i
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Meb-————  Domainm
|
|
|

Me  MyE ==X
4.2. e-Neighbourhood of the Origin.

We introduce the local coordinates and the integration variable:

e =X =X

p S, P = tT Substitution in (3.4) gives
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oo I T X
ug, n) - = jo ¢(ep).exp(”—2‘P~) %{Ko(gl-) - KO(%}dp, (4.1)
=2+ o - r, = B2 o+ 0t

In this expression the parameter € occurs only in ¢(€p), so that, in
general, one needs to solve the complete differential equation in an €-
neighbourhood of the origin. The order of magnitude of (4.1) depends on
the behaviour of ¢(y). If we suppose ¢(y) to be analytic for y > 0, then
(4.1) yields on asymptotic development:

U, m = L v,

(n) o - r I"Z
v.&. n)= —%Hg—g)— 5 p" exp(n2p> '3{2{ {KO(—%> - KO(—2——>}dp. (4.2)
0

Thus, in this case, the exact solution is 0(€) in an €-neighbourhood of the
origin.

4.3 The Parabolic Boundary-Layer,

We introduce in domain II:

E=—2—,7=2,frf>0 726>0, 0<p <1, (4. 3)
ez(B+1) B
with 6 an arbitrary small positive number, / N
We separate (3.4) into two parts: U involving [\o\ i—z—g—ﬂ—> and Uy in-
) )»’7

- Nx2F(try)2
vorving 16 2P
4,3a, From (4.,2) we obtain:

_¢(n)(o) 3 n

_ 9 n - e\ (o) —n
Ud _ngl V;m € Van (Eu 77) n! BE, ) (4:.4)

I(8.n) = j:w“ eXp<E-21Vl’> K, (I%}>dw.

Substituting the integral representation:

l‘l>
r - T
1
K0<—2—> = j E== ds
1 VSZ -1

and defining new variables p = w-71, t = r;s - p, yields, after changing

the order of integration: I, Iyt I
T L 1
1 - 3 - —
I :51 e ®dt, I =jI e Zat, t, = + %+ €’
nl Dn1 ? Tn2 Du2 1 °
0 t
) +n t E’Z
iL___ - R -
Dm § dp: Pl - - § + 9t * p2 = -n. (4. 5)

t+p

1
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1 ' at . al
0 -— 1 L
noo_ _ ) 1 n ) Dnl
F)4 [IDrﬂ IDnz] -€ 9t ’. € ot dt +
t=t]_ 0
Y Dn2
9 202
+ 5 e Y3 dt. (4. 6)
3]
Suppose U, =

=t lu + U , such that U represents the contri-
n=1 anl an2 anl
bution irom the second term of (4.6) and U, , from the third (the first
term appears to be zero). In appendix 1 we prove that

¥ =y - 1-8
U, & ) = o™,

(4.7)
oI

We define a new integration variable s
local coordinates (4. 3),

Dn1
An expression for _aE,L can be derived from (4.5) in an elementary way.

%2/t and, moreover, we choose
this gives

{n} o | ~35 $2 n
s = _ ¢ (0) [Te* ngf = E° s 1B
U@ ) sF—== = | € n ‘E*' 5 €

nl\/é;-[vg

0
() =2 m
_p M nem(i-p) 5 _E 8 18 ds
m=0 - ’ 2s 2 '
a =1, a =
nn

L= 1,03, ... {2(n-m)-1}.
appendix 2):

This expression can be expanded asymptotically with respect to € (see

dt
2)
t 2t
© 12 BE 2\ :
+—1—j_ e (tz—l).sé‘ by - & 52 1dt |+ 0(e?), t, = \/5,. (4.8)
\/27! A Zt/
2

4.3b. The contribution from U_ is, because K,(p) = -K{(p):

U S S RALART 4.9

b (% ¥) = 55 (1) T7= - . exp|Lrdt. (4.9)
) X HEy)

holds:

In the coordinates (4.3) the following estimation for the argument of K,
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2—1€\/E2€B+1 + (t1eB)? > F6eBl » 1,

The K, -function can be expanded with respect to its large argument:

K, (p) = gp. ep, {1 + (p'l)}for p » 1,

Applying this to (4.9), we obtain after repeated partial integration:

o0 ‘ n) § 0+l-8 F
v =8u .U E 0 900 & & eXp(-%%.{HO(el‘ﬁ)}, (4. 10)

2n! 1 \[f#7

U, E, 1) = 0€"™P) for 7> 6> 0. : (4.10a)

4, 3c, The following expansion for (3.4) in domain II has been constructed:

UE, ) :n§1 {Uanl * Uppg - Ubn} ~ (4.11)
with U_ ., U, o and Ubn as in (4.8), (4.7) and (4.10).

4.4, The Remaining Domain,
In domain III are defined the local coordinates

E ==, n=2L,%26>0, 0<a < HB+1) < 1. (4.12)
€ €

In this case the arguments of both Bessel functions are large, so that

we can treat U(¢, #) in the same way as U, in 4. 3b.
The result is:

UE, A) = 0(eY), with N an arbitrary large number, (4.13)

4.5. Uniformly Valid Expansion,

We wish to determine from the three local expansions one expansion,
which holds in the complete region: x > 0, -y > 0. This expansion has to
be asymptotically equivalent to the local solutions in the corresponding

domains. The term U;(x, y; €) = v, (zﬁ, z")e represents the solution (3.4)

in the case that @(y) = ¢'(0)y. Applying the computations of section 4, 3
to this solution, we obtain (4.11) for n = 1, in which

Uall(z’ T)):Ulo (EJ ﬁ) + €U11 (E: T—]) + 0(62)

in accordance with (4.8), Therefore, in

/X

Up(x, y; €) = Uypy \V_g': Y> t e {Vl (}5: g) - _€1— U1u<’\7—§:b }’)}

the coefficient of € is 0(1) in the domains I and II, in dgmain III (4.13) is
satisfied. When we continue for é(y) = ™ (0).y2/n!, n =2, 3, ..., a-
sum these expansions for U, we get the uniformly valid expansion for
(3.4). The first two terms are: ; '

U, v €) = Uy[E, 5) + eUilx, 35 ) + 0(e?), (4.14)
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T N i o -%2 X2
DO(\_/'EJ }’) - \/121': ."_x__e " ¢< ) 2€t2>dt’ e
_ Ve
X ¥y 8'(0) \ 2 - 412 | x”
U (x, ¥; E)=V1(E’ e> = 75" © AN o

@ ’ 2
| +%\/§ |G {ys( - 2’:2) . ¢'<o>}dt. (4. 14b)

5. Application to a Bounded Region.

The results of section 4.5 can be used to construct an asymptotic ap-
proximation of (1, 1a) with boundary conditions in a bounded region. In this
case we do not need the exact solution of the problem, - which is, moreover,
practically impossible to obtain. '

e{%+%}-—g¥=o,05xi1,05yil. (5.1)
Vix, 0) = f,(x), (5.1a)
V(x, 1) = f,(x), (5. 1b)
V0, ) = g (), £,(0) = g(0), £,(0) = g (1) (5. Lc)
V(1, y) = gy(y), (1) = g,(0), £,(1) = g,(1). (5.14)

For the first two terms of the approximation we obtain (as in [2] ):

V =V, + eV + 0(c?, (5.2)
Vx, y; €)= W(x, y)+ U, (%, v + T [22Z,y)+ T.(x, v; € (5.2a)
BRI o\ ¥ ¥ AoV?'y Bo\ &’ 0\ Xs 5 €) 9. 23)
\4 (x, y; €) = W (%, y) + UAI(X’ y; €) + UBl (1-x, y; €). (5. 2b)

W = W, + €W, expresses the partlof the solution, which satisfies (5. 1la)
by Wo(x, y) = £,(x), Wy(x, y) = yi1(x).

A= U@o + €U,; + 0(e*) is the part _which satisfies UA(Of y) = gl(y) -
W(0, y), it has the form (4.14). Likewise for U, (1-x, y) with Uy(1, y) =
gz(Y) - W(l, Y)-

Finally for T(x, y), satisfying the remaining boundary T(1, y) = f,(x) -
W{x, 1), we have a singular perturbation problem. It is solved by intro-
ducing the local coordinate n = (1-y)/€. The solution of the reduced equation
is Ty (x, y; €) = T(1, y) exp((y-1)/e€).

{5.2) is wvalid in the bounded region, excepted arbitrary small neigh-
bourhoods of the points (0.1) and (1.1),

6. Conclusions.

We summarize the results of chapter 4. and 5. Considering the differential
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equation:
2 2
0
€ U+aU _a_T“.Izo,sz,yZO,()(E«l,
ax? ay2 oy

with boundary conditions U{x, 0) = 0, U(0,y) = é{y), #(0) = 0, we conclude:

a, In an €-neighbourhood of the origin the exact solution has to be deter-
mined. The order of magnitude depends on the behaviour of ¢(y)

b, When ¢(y) is analytic for y > 0, then in an €-neighbourhood of the origin
the exact solution is 0{€) and can be expanded as (4. 2).

c. The parabolic boundary-layer (4.14a) turns out to be a uniformly valid
approximation of U(x, y; €) with a remainder term 0(¢)

d. A uniformly valid approximation of U(x, y; €) has been obtained with
an accuracy 0(€?). This approximation cannot be constructed by the
usual (iterative) method, as it contains the exact solution of the differ-
ential equation with the reduced boundary condition ¢(y) = ¢'(0)y.

Finallywe have established a method for finding higher-order approximations

for the problem in a bounded region,

APPENDIX 1,

The contribution of Aan.‘z to the solution is estimated as follows:

t
ol -1 oot
2 _ _ 2 1
13 j 5_ (o dp dt [IDnZ] e P oy

%% 1 (2tp+t2 -§ )3/2 =11

The second term vanishes in (4, 6). Introducing new integration variables
r = ptn, s = t-2n, yields in the. coordinates of (4. 3):

3

__ ar-ls
Uq(zvﬁ)z‘(n) ) ,n+18j‘§ r 2 eT%drds
-anz A5 , T n! 2 _1-8 =_§2 ]3/2
{4ﬁ+23€1'B +5£ ;2577 i }

We brought U_, in a form, such that estimation is easy:

€, f) = 0(e™B) for 7> 6> 0,

an"

APPENDIX 2,

o0

Determining the {irst two terms of the expansion Ofn§1 U, »

o 3 P (n) ® -3 o\
L U= LU, UA‘=§1¢ (O)Se I,ds, I -6“5(17-§——>,

we define

n=t Al g 1= 2s

n=1 (111) n-m
I. = © - emxn-m f- s,
2 mzlom
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n
0=l "8y mea ) a~m 22 1-6y m
= 0 (1-8) -2 Se
b =L € m-55 " -

m=Q - 2

The term Uy

- 2 _1-8
. 0+t T) +E%¢
Define t _MZTI . S

gr: s = t st 5 1B

= € P
QH = 61‘5,..> a7
40

= $™(0) B et g2 22(52 1-8 ’
U = E j ﬁ - .= € . e .
Al T n,vﬂ \7{ 2t 2t 41‘12

2 N F2 \ g2
th B, > 1 -2 B, 1-—5’3 B, L) dt.
81 _ 871 4n

The expression consists of terms 0(¢® *M1-8) )
k=1, 2, 3, ....

Fork=90,n=1, 2, 3,
expansion, which is 0(1),

For k =1, n =2, 3, 4, the terms are 0(€).

Forn=1, k=1, 2, 3 ... they are also 0(¢), however, this set is
not summed, We add this contribution ta the solution by 1ntegrat1ng over

the original integration variable sg < s < %2/2f with n = 1,
Faor k = 2, 3, 4, .

they form the first term of the asymptotic

..on =2, 374, ... the terms are 0(€%), so that

g _O0) 84" \e/’-%l( E2>n
U,, =L € j 7 - dt +
Al = F t 2t

n=1 n\f2 £

_2
5 4 :
, n ks 3

€ 0 EB-]' j BS ﬁ -— dS +

o T

- 4 A= ek [/ E2V 2 [ g\ e
§2M€(“)5 ﬁt'_ -2 (t-l)—j-nn-% .5.2 dt | + o(e?).
= n‘.\,?.'n' 2 an 817

Taking the Taylor-series together, we obtain,

after a simplification by
partial integration,

and after a same computation for U, , i = 2,3:

= L 2 B\
*® 1 e 8 = [
Zyu = — —— f$le 1 - 5—Ids +
a=1 anl -_— 5-2 2s
2@ JE° \/s
on /
32
£
i 21 s/ 79 « %5 BF 2
Q) eh-1 S £ (7 _%; ds +—1 5 € (s-1) ¢'{e4n _f% ds i+ 0 2)‘
X o Vé Afr )i \[s

Al

This result has been used in section 4.3 with t = \/g
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